Ultimate and Serviceability Limit states
The ultimate and serviceability limit states used in the Code carry the normal meaning as in other codes such as BS8110. However, the Code has incorporated an extra serviceability requirement in checking human comfort by limiting acceleration due to wind load on high-rise buildings (in Cl. 7.3.2). No method of analysis has been recommended in the Code though such accelerations can be estimated by the wind tunnel laboratory if wind tunnel tests are conducted. Nevertheless, worked examples are enclosed in Appendix A, based on empirical approach in accordance with the Australian/New Zealand code AS/NZS 1170.2:2011. The Australian/New Zealand code is the code on which the current Hong Kong Wind Code has largely relied in deriving dynamic effects of wind loads.
Design Loads
The Code has made reference generally to the “Code of Practice for Dead and Imposed Loads for Buildings 2011” for determination of characteristic gravity loads for design. However, the designer may need to check for the updated loads by fire engine for design of new buildings, as required by FSD.
The Code has placed emphasize on design loads for robustness which are similar to the requirements in BS8110 Part 2. The requirements include design of the structure against a notional horizontal load equal to 1.5% of the characteristic dead weight at each floor level and vehicular impact loads (Cl. 2.3.1.4). The small notional horizontal load can generally be covered by wind loads if wind loads are applied to the structure. Identification of key elements and designed for ultimate loads of 34 kPa, together with examination for progress collapse in accordance with Cl. 2.2.2.3 of the Code can be exempted if the buildings are provided with ties in accordance with Cl. 6.4.1 of the Code. The reinforcement provided for other purpose can also act as effective ties if continuity and adequate anchorage for rebar of ties have been provided. Fuller discussion is included in Section 14 of this Manual.
Wind loads for design should be taken from Code of Practice on Wind Effects in Hong Kong 2004.
It should also be noted that there are differences between Table 2.1 of the Code that of BS8110 Part 1 in some of the partial load factors f. The beneficial partial load factor for wind, earth and water load is 0 and that for dead load is 1.0 which appear more reasonable than that in BS8110 giving 1.2 for both items. However, higher partial load factor of 1.4 is used for earth and water pressure that in BS8110 giving 1.2 and 1.0 so as to account for higher uncertainty of soil load as experienced in Hong Kong.
Click Here Download
The ultimate and serviceability limit states used in the Code carry the normal meaning as in other codes such as BS8110. However, the Code has incorporated an extra serviceability requirement in checking human comfort by limiting acceleration due to wind load on high-rise buildings (in Cl. 7.3.2). No method of analysis has been recommended in the Code though such accelerations can be estimated by the wind tunnel laboratory if wind tunnel tests are conducted. Nevertheless, worked examples are enclosed in Appendix A, based on empirical approach in accordance with the Australian/New Zealand code AS/NZS 1170.2:2011. The Australian/New Zealand code is the code on which the current Hong Kong Wind Code has largely relied in deriving dynamic effects of wind loads.
Design Loads
The Code has made reference generally to the “Code of Practice for Dead and Imposed Loads for Buildings 2011” for determination of characteristic gravity loads for design. However, the designer may need to check for the updated loads by fire engine for design of new buildings, as required by FSD.
The Code has placed emphasize on design loads for robustness which are similar to the requirements in BS8110 Part 2. The requirements include design of the structure against a notional horizontal load equal to 1.5% of the characteristic dead weight at each floor level and vehicular impact loads (Cl. 2.3.1.4). The small notional horizontal load can generally be covered by wind loads if wind loads are applied to the structure. Identification of key elements and designed for ultimate loads of 34 kPa, together with examination for progress collapse in accordance with Cl. 2.2.2.3 of the Code can be exempted if the buildings are provided with ties in accordance with Cl. 6.4.1 of the Code. The reinforcement provided for other purpose can also act as effective ties if continuity and adequate anchorage for rebar of ties have been provided. Fuller discussion is included in Section 14 of this Manual.
Wind loads for design should be taken from Code of Practice on Wind Effects in Hong Kong 2004.
It should also be noted that there are differences between Table 2.1 of the Code that of BS8110 Part 1 in some of the partial load factors f. The beneficial partial load factor for wind, earth and water load is 0 and that for dead load is 1.0 which appear more reasonable than that in BS8110 giving 1.2 for both items. However, higher partial load factor of 1.4 is used for earth and water pressure that in BS8110 giving 1.2 and 1.0 so as to account for higher uncertainty of soil load as experienced in Hong Kong.
Click Here Download
0 comments :